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ABSTRACT
Solar activity has significant impacts on human activities and health. One most com-
monly used measure of solar activity is the sunspot number. This paper compares
three important non-deep learning models, four popular deep learning models, and
their five ensemble models in forecasting sunspot numbers. Our proposed ensemble
model XGBoost-DL, which uses XGBoost as a two-level nonlinear ensemble method
to combine the deep learning models, achieves the best forecasting performance
among all considered models and the NASA’s forecast. Our XGBoost-DL forecasts
a peak sunspot number of 133.47 in May 2025 for Solar Cycle 25 and 164.62 in
November 2035 for Solar Cycle 26, similar to but later than the NASA’s at 137.7 in
October 2024 and 161.2 in December 2034.

1. Introduction

Human activities and various events on Earth are strongly intertwined with solar activ-
ity (Pulkkinen 2007; Hathaway 2015). An increase in solar activity includes increases
in extreme ultraviolet and X-ray emissions from the Sun toward Earth, resulting in the
atmospheric heating that can be harmful to spacecrafts, satellites and radars. Increased
solar flares and coronal mass ejections due to high solar activity can damage the com-
munication and power systems on Earth. The approximately 11-year cyclic pattern
of solar activity seems easily predictable, but the cycle varies in both amplitude and
duration. Accurate prediction of solar activity is thus of great interest to estimate the
expected impact of space weather on space missions and societal technologies.

Solar cycles are also considered to impact many aspects of human health. Juckett
and Rosenberg (1993) observed longer human longevities during solar cycle minimums.
Davis Jr and Lowell (2004) reported higher incidences of mental illness in chaotic solar
cycles. Azcárate, Mendoza, and Levi (2016) found larger fluctuations in blood pressure
during ascending phases of solar cycles. Qu (2016) concluded that most influenza
pandemics occurred within one year of solar cycle peaks. Predictions of solar activity
can hence assist people in taking the necessary precautions.

The number of the sunspots, which appear as dark areas on the solar disk, is the
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most commonly used measure of solar activity (Usoskin 2017). For one thing, the
sunspot number is one directly visible characteristic of the Sun. For another, there is
a publicly available record of sunspot numbers that can be traced back to as early as
year 1749.

Prediction of sunspot numbers belongs to the scope of time-series forecasting that
may be tackled by either non-deep learning or deep learning methods. Examples
of popular non-deep learning methods in general time series forecasting are Auto-
Regressive Moving Average (ARMA) models (Box and Jenkins 1976), Exponential
Smoothing (Holt 1957; Winters 1960), and the Prophet model recently developed by
Facebook (Taylor and Letham 2018). Deep-learning time-series forecasting methods,
mainly prevailing in natural language processing, include Long Short-Term Memory
(LSTM; Hochreiter and Schmidhuber 1997), Gated Recurrent Unit (GRU; Cho et al.
2014; Chung et al. 2014), Transformer (Vaswani et al. 2017), and the recent Informer
(Zhou et al. 2021). Non-deep learning methods often have restrictive theoretical as-
sumptions that limit their performance on real-world time series data (Lara-Beńıtez,
Carranza-Garćıa, and Riquelme 2021). Deep learning methods are generally superior
over non-deep learning methods due to the capability of extracting complex data rep-
resentations at high levels of abstraction (Han et al. 2019).

Although there have been many studies on predicting the sunspot number by us-
ing non-deep learning (Xu et al. 2008; Hiremath 2008; Chattopadhyay, Jhajharia, and
Chattopadhyay 2011; Tabassum, Rabbani, and Omar 2020) or deep learning forecast-
ing methods (Pala and Atici 2019; Benson et al. 2020; Arfianti et al. 2021; Prasad
et al. 2022), most are based on ARMA models or deep learning methods like LSTM
or GRU. Little work has been done on the more recent time-series models Prophet,
Transformer, and Informer for the sunspot number prediction. Moreover, the ensemble
learning methods (Kuncheva 2014) are rarely considered in this forecasting problem.

Ensemble learning is widely used in machine learning to boost the performance by
combining results from multiple models. Since the ensemble result is often better than
that of a single model, this technique has been increasingly applied to time series
forecasting (Wichard and Ogorzalek 2004; Qiu et al. 2014; Oliveira and Torgo 2015;
Kaushik et al. 2020). Basic ensemble methods simply use the average or median of
predictions from all base models. More sophisticate methods assign different weights
to base models such as the error-based method and linear regression (Adhikari and
Agrawal 2014).

Due to the regression nature of ensemble learning, any machine learning algorithm
for regression can be used as an ensemble method. We thus propose to apply one
state-of-the-art nonlinear method, Extreme Gradient Boosting (XGBoost; Chen and
Guestrin 2016), to ensemble the predictions from multiple time-series forecasting mod-
els. XGBoost is a fast and accurate implementation of gradient boosted decision trees,
which has recently been dominating applied machine learning for regression and clas-
sification tasks (Zhong et al. 2018; Chang, Chang, and Wu 2018; Pan 2018; Ogunleye
and Wang 2019). The popularity of XGBoost mainly stems from its three modifica-
tions to traditional gradient boosted decision trees: the approximate greedy algorithm
with weighted quantile sketch to fit large dataset, the sparsity-aware split finding algo-
rithm to deal with missing values, and the cache-aware access technique to effectively
utilize hardware resources. Besides these advantages, we essentially use XGBoost as
a two-level ensemble method, because XGBoost itself is an ensemble of decision trees
and each decision tree therein nonlinearly combines the forecasting models. The two-
level nonlinear ensemble nature of our usage of XGBoost makes it potentially more
powerful than single-level ensemble methods such as those aforementioned.

2



In this paper, we conduct a comparative study of non-deep learning and deep learn-
ing models as well as their ensemble models for the sunspot number prediction. We
compare the three non-deep learning models, Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA; Box and Jenkins 1976), Exponential Smoothing, and Prophet,
and the four deep learning models, LSTM, GRU, Transformer, and Informer. We also
consider their ensemble models from basic ensembles, the error-based method, linear
regression, and XGBoost.

The contributions of the paper are summarized below.

• We compare three important non-deep learning models (SARIMA, Exponential
Smoothing, and Prophet), four popular deep learning models (LSTM, GRU,
Transformer, and Informer), and their five ensemble models (via mean, me-
dian, the error-based method, linear regression, and XGBoost) in predicting
the sunspot number.
• We propose to use XGBoost as a two-level nonlinear ensemble method to com-

bine the results from time-series forecasting models. Our XGBoost-DL model,
which uses XGBoost to ensemble the four deep learning models, has the best
performance in comparison with other considered base and ensemble models as
well as the prediction from the National Aeronautics and Space Administration
(NASA).
• We provide an open-source Python package of the XGBoost-DL model for

the sunspot number prediction at https://github.com/yd1008/ts_ensemble_
sunspot.
• We use the proposed XGBoost-DL model to forecast the Solar Cycles 25 and 26,

and compare the result with the NASA’s prediction.

The rest of this paper is organized as follows. Section 2 introduces the seven afore-
mentioned time-series forecasting methods. Section 3 describes the five ensemble learn-
ing methods including the proposed XGBoost-based ensemble. Section 4 compares all
considered base and ensemble models as well as NASA’s report for the sunspot number
prediction. Section 5 makes concluding remarks.

2. Forecasting Methods

In this section, we introduce seven time-series forecasting methods including the three
non-deep learning methods SARIMA, Exponential Smoothing, and Prophet, and the
four deep learning methods LSTM, GRU, Transformer, and Informer. We denote a
univariate time series by y = (y1, y2, . . . , yt, . . . ), where yt is the observation at time t.

2.1. Non-deep learning methods

2.1.1. SARIMA

SARIMA (Box and Jenkins 1976), as an ARMA variant, is one most commonly used
model in the past decades to forecast trend and seasonal time series. It uses a mix of
autoregressive terms, moving average terms, and differencing procedures for both non-
seasonal and seasonal components to represent the current value in a time series based
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on prior observations. Specifically, an SARIMA(p, d, q)(P,D,Q)s model is defined by

φ(L)Φ(Ls)(1− L)d(1− Ls)Dyt = c+ θ(L)Θ(Ls)εt

φ(L) = (1− φ1L
1 − φ2L

2 − · · · − φpLp)

Φ(Ls) = (1− Φ1L
s − Φ2L

2s− · · · − ΦPL
Ps)

θ(L) = (1 + θ1L
1 + θ2L

2 + · · ·+ θqL
q)

Θ(Ls) = (1 + Θ1L
s + Θ2L

2s + · · ·+ ΘQL
Qs),

where (φi, θi,Φi,Θi) and (p, q, P,Q) are the parameters and the orders of the non-
seasonal autoregressive, the non-seasonal moving average, the seasonal autoregressive,
and the seasonal moving average terms, respectively, εt is white noise, L is the lag oper-
ator, d is the order of non-seasonal differencing, D is the order of seasonal differencing,
s is the span of the seasonality, and c is a constant.

2.1.2. Exponential Smoothing

Proposed in 1950s, Exponential Smoothing (Brown 1956; Holt 1957; Winters 1960)
remains to be one of the widely used time series forecasting methods. Although there
are several types of Exponential Smoothing, we focus on the Holt-Winters Exponential
Smoothing method (Holt 1957; Winters 1960), which can model the trend and season-
ality of a time series. The Holt-Winters method and SARIMA have shown comparable
performances in a number of previous studies (Lidiema 2017; Liu et al. 2020; Rabbani
et al. 2021).

Also known as Triple Exponential Smoothing, the Holt-Winters method comprises
three smoothing equations for the level lt, the trend bt, and the seasonality st, respec-
tively. There are two main models of this method, the additive seasonal model

yt+h = lt + hbt + st−m+h+
m

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m,

and the multiplicative seasonal model

yt+h = (lt + hbt)st−m+h+
m

lt = α
yt
st−m

+ (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ
yt

lt−1 + bt−1
+ (1− γ)st−m,

where α, β, γ ∈ [0, 1] are smoothing parameters, m is the frequency of the seasonality,
and h+

m = [(h− 1) mod m] + 1 for h ≥ 1.
The two models differ in the nature of the seasonality. The additive model ought

to be considered when the seasonal variations are stable over time, while the mul-
tiplicative model is used when the seasonal variations are changing proportional to
the level of the time series. Due to the variability of the amplitude of sunspot cycles,
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following Tabassum, Rabbani, and Omar (2020), we use the multiplicative model for
the sunspot number prediction.

2.1.3. Prophet

Prophet (Taylor and Letham 2018) is a more recent time series forecasting algorithm
compared to the previous two. Despite some commonalities with SARIMA and Ex-
ponential Smoothing, it provides a more intuitive approach to model the trend and
seasonality of time series by incorporating more flexibilities in its configuration.

Prophet has three essential components: trend bt, seasonality st, and holiday ht. The
holiday option allows Prophet to adjust the forecast that may be affected by holidays
or major events. The full model with a logistic trend term is

yt = bt + st + ht + εt

bt =
C

1 + exp(−k(t−m))

st =

N∑
n=1

[
αn cos

(
2πnt

P

)
+ βn sin

(
2πnt

P

)]
ht = [1(t ∈ D1), . . . ,1(t ∈ DL)]κ,

where εt is the error term, C is the carrying capacity that is the maximum value of
the logistic curve, k is the growth rate that controls the steepness of the curve, m is an
offset parameter corresponding to the curve’s midpoint, the seasonality st is expressed
by a standard Fourier series with parameters {αn, βn}Nn=1 and a regular period P that
the time series has, Di is the set of dates for holidays, and κ ∈ RL is the change in
the forecast caused by holidays.

2.2. Deep learning methods

Although non-deep learning methods can handle a wide range of time series forecasting
tasks, their theoretical limitations often prevent them from being directly applicable to
data or modeling complex non-linearity in data, as well as computational complexity
makes them impractical to large datasets. Therefore, deep learning techniques such as
Rucurrent Neural Networks (RNNs) were introduced (Lara-Beńıtez, Carranza-Garćıa,
and Riquelme 2021). RNNs have shown better performance than non-deep learning
methods in time series forecasting due to its ability to deal with longer sequences and
better capture temporal dependencies (Tsui et al. 1995; Zhang and Man 1998).

2.2.1. LSTM

The LSTM network (Hochreiter and Schmidhuber 1997) is one most popular model in
the RNN family. The vanilla RNN suffers from vanishing gradients and is not capable to
achieve desirable results for long sequence data (Hochreiter 1998). The LSTM network
mitigates this issue rising from long-term dependencies by introducing a gated memory
cell architecture, which controlls the information flow with three gates: an input gate
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it, an output gate ot, and a forget gate ft. The LSTM cell is formulated as follows:

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft · ct−1 + it · c̃t
ht = ot · tanh(ct),

where xt is the input which is the hidden state ht from the previous layer and is yt for
the first hidden layer, σ(·) is the sigmoid function, tanh(·) is the hyperbolic tangent
function, ht is the hidden state, ct is the state of the memory cell, c̃t is the candidate
state of the memory cell, and W and U are the weights of the input and recurrent
connections as well as b is bias with subscripts i, f , o and c for the input gate, forget
gate, output gate, and memory cell, respectively.

In each hidden layer of the LSTM network, a sequence of LSTM cells are aligned
side-by-side and input data are sequentially fed into each cell. LSTM’s capability of
communicating across multiple cells comes from the hidden states and the cell states.
The hidden state carries over information from the previous cell to the next and a new
hidden state is generated from each LSTM cell, while the cell state selectively stores
the past information. The input, output, and forget gates generate a new hidden state
and update the the cell state in the following procedure. The input gate determines
whether new information will be added to the memory in two steps: it uses a sigmoid
function to decide which information needs to be updated, and c̃t utilizes a hyperbolic
tangent function to select new candidate information to be added to the memory.
The forget gate decides what information should be discarded from the memory by
applying a sigmoid function to the previous hidden state ht−1 and current input value
xt. The output of the forget gate ranges between 0 and 1, with 0 indicating complete
removal of the previously learnt value and 1 indicating retention of all information.
The output gate determines what will be generated as the output. ot acts like a filter
by selecting the relevant information from the memory with a sigmoid function to
generate an output value, which is then multiplied with the cell state passing through
a hyperbolic tangent function to form the representations in the hidden state. The
structure of the LSTM cell is illustrated in Figure 1.

x

+tanh x tanh x

Figure 1. The structure of the LSTM cell.
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2.2.2. GRU

The GRU (Cho et al. 2014; Chung et al. 2014) network is another well-known RNN
model using a gating mechanism similar to that in LSTM, but it has a simpler cell
architecture and is computationally more efficient (Torres et al. 2021; Lara-Beńıtez,
Carranza-Garćıa, and Riquelme 2021). The GRU cell only has two gates, an update
gate zt and a reset gate rt. The update gate decides the amount of previous infor-
mation to be passed to the next state, helping capture long-term dependencies in the
sequence. The reset gate determines how much of the past information to neglect and
is responsible to learn short-term dependencies. The GRU cell is formulated by

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt · ht−1) + bh)

ht = (1− zt) · ht−1 + zt · h̃t,

where the notation is similar to that in (1). The functionalities of the gates used in
GRU are also similar to those in LSTM. Figure 2 shows the structure of the GRU cell.

x

tanh

+

1-

x

x

Figure 2. The structure of the GRU cell.

2.2.3. Transformer

Since introduced in 2017, Transformer (Vaswani et al. 2017), a solely self-attention
based encoder-decoder network, has become the state of the art model in natural
language processing, along with a number of its variants (Devlin et al. 2018; Yang
et al. 2019; Liu et al. 2019). Recently, Transformer and self-attention based models
have gained increasing popularity in time series tasks (Wu et al. 2020; Zhou et al.
2021; Wen et al. 2020; Li et al. 2019). Transformer abandons the recurrent layers of
RNNs that process data of the input sequence one after another. It instead uses a
self-attention mechanism, which ditches the sequential operations and can access any
part of the sequence, to capture global dependencies and enable parallel computation.

The core of Transformer is the scaled dot-product self-attention written as

Attention(Q,K, V ) = softmax(
QK>√
dk

)V, (2)
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where Q,K and V are matrices with the i-th rows being the i-th query, key and value
vectors, and dk is the dimension of the key vectors. In a self-attention layer, input data
pass through three separate linear layers to form the query, key, and value matrices.
Dot products of queries and keys are then calculated. In masked attention layers, a
mask of the same size as the dot product matrix, with the upper triangle of the mask
having values of −∞ and 0’s elsewhere, is added to the dot product to prevent values
in a sequence from attending to succeeding ones. The dot product matrix scaled by√
dk is then fed into the softmax function. The attention scores are calculated by

the dot product between the output of the softmax function and the value matrix.
In multi-head attention layers, multiple self-attention layers are stacked with each
layer consisting of different sets of weights. The final attention scores are generated by
combining attention scores calculated in parallel from each self-attention layer. To use
the sequence-order information, Transformer adopts a positional encoding mechanism
based on sine and cosine functions. The encoded values are added to the input data,
indicating positional information of each value in the sequence, such that Transformer
can distinguish values in one position from another without requiring specific order of
the input data. Figure 3 illustrates Transformer’s encoder-decoder architecture.

Multi-head
attention

Add & Norm

Feedforward

Add & Norm

Multi-head
attention

Add & Norm

Feedforward

Add & Norm

Masked Multi-
head attention

Add & Norm

Figure 3. Transformer’s encoder-decoder architecture.

2.2.4. Informer

The quadratic computational complexity of dot-product self attention and the heavy
memory usage in stacking layers are major concerns in dealing with long input se-
quences. There have been some attempts to address these issues (Child et al. 2019;
Li et al. 2019; Beltagy, Peters, and Cohan 2020; Zhou et al. 2021). We focus on the
award-winning method Informer (Zhou et al. 2021).

Informer is proposed as an enhancement of Transformer on long-sequence time series
forecasting. Informer adopts a ProbSparse attention mechanism which selects only the
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most dominant u queries for each key to attend to:

Attention(Q,K, V ) = softmax(
QK>√
dk

)V,

where Q only contains the top-u queries chosen under the query sparsity measure-
ment with Kullback-Leibler divergence which is further approximated efficiently with
random sampling. The ProbSParse self-attention allows Informer to reduce both time
complexity and memory usage from O(L2) down to O(L logL) for input length L. In
addition, Informer allows longer input sequences by using the self-attention distilling:

Xt
j+1 = MaxPool(ELU(Conv1d([Xt

j ]AB))),

where [·]AB is the attention block, Xt
j+1 is the t-th sequence in the j-th attention

layer, MaxPool(·) is a max-pooling layer with stride 2, ELU(·) is the ELU activation
function, and Conv1d(·) is a 1-D convolutional filter with kernel size of 3. By distilling,
a more condensed feature map is passed from one attention layer to the next, while
information is largely preserved. The corresponding memory usage is O((2−ε)L logL)
instead of O(JL logL) for J-stacking layers, where ε is a small number.

3. Ensemble Learning Methods

Ensemble learning combines the results from multiple models to produce predictions
(Dong et al. 2020). The combined results usually exhibit better performance because
ensemble methods can often decrease the likelihood of overfitting, reduce the chance
of being trapped in a local minimum, and extend the size of the search space (Sagi
and Rokach 2018). In time series forecasting tasks, commonly used ensemble methods
include basic ensemble methods, error-based method, and machine learning methods.
In the following sections, Ŷ = (ŷij) ∈ Rn×m denotes the matrix of predictions from m
forecasting models at n time points, ŷij is the predicted value from the j-th model at
the i-th time point, and ŷi is the final prediction at the i-th time point.

3.1. Basic ensemble methods

Basic ensemble methods combine the predictions from all base models by some simple
functions such as mean and median:

ŷi = mean(ŷi1, . . . , ŷim),

ŷi = median(ŷi1, . . . , ŷim).

Although these methods are straightforward and simple to comprehend, they ignore
the possible relationship among base models and thus are not adequate for combining
nonstationary models (Allende and Valle 2017).

3.2. Error-based method

Unlike the mean ensemble method that weighs all base models equally, error-based
method assigns weights inversely proportional to forecast errors (Adhikari and Agrawal
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2014). Specifically, the data is divided into training and validation sets. A specific
evaluation metric is selected to compute the forecast error ej on the validation set for
the j-th base model fitted on the training set, and then the model’s weight is

wj =
e−1
j∑m

j=1 e
−1
j

.

The final prediction of this method is

ŷi =

m∑
j=1

wj ŷij . (3)

The error-based method improves the mean ensemble method by allowing different
weights for base models, but its performance is still highly dependent on the forecasting
performance of each base model.

3.3. Linear regression

The mean, median, and error-based ensemble methods are all linear ensemble methods
in the form of (3). The linear ensemble problem can be written as the linear model:

yi = ŷi + εi =

m∑
j=1

wj ŷij + εi, (4)

where the forecasts of base models {ŷij}mj=1 are the features, and the true observation
yi is the target. Linear regression, or the least squares method, provides the optimal
weights that minimize the sum of squared errors

∑n
i=1 ε

2
i . Formulate (4) in the matrix

form

y = Ŷ w + ε.

The optimal weight vector given by linear regression is w = Ŷ †y with Ŷ † the Moore-
Penrose pseudo-inverse of Ŷ (Penrose 1956).

3.4. XGBoost

As ensemble learning is essentially a regression problem with features {ŷij}mj=1 and
target yi, any machine learning algorithm for regression is applicable as an ensemble
method. In addition to linear regression, there are many nonlinear regression methods
such as kernel regression (Li and Racine 2007), support vector regression (Cherkassky
and Ma 2004), and tree-based regression algorithms (Breiman et al. 1984; Breiman
2001; Friedman 2001).

We consider the state-of-the-art nonlinear method, XGBoost (Chen and Guestrin
2016), a highly efficient and effective implementation of gradient boosted decision
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trees. XGBoost aims to solve the objective function

L =

n∑
i=1

l(ŷi, yi) +

K∑
k=1

Ω(fk) (5)

with ŷi =

K∑
k=1

fk(ŷi1, . . . , ŷim)

and Ω(f) = γT +
1

2
λ‖ω‖22,

where l is a differentiable convex loss function that measures the difference between
the prediction ŷi and the target yi, {fk}Kk=1 are decision trees, and Ω(f) is the penalty
term with tuning parameters γ and λ to control the model complexity in which T
and ω are the number of leaves and the leaf weights in the tree. The first term is the
objective of the traditional gradient tree boosting, while the second term added by
XGBoost is to prevent overfitting.

We intrinsically use XGBoost as a two-level ensemble method here to combine the
predictions of multiple forecasting methods. As shown in (5), XGBoost itself is an
ensemble method that sums the results of K decision trees, each of which is a base
model. Besides the ensemble nature of XGBoost, each decision tree therein nonlinearly
ensembles the forecasts of base time-series models. The entire procedure turns out to
be an ensemble model that has two levels of ensembles, which is expected to perform
better than single-level ensemble methods such as those mentioned above.

4. Experiments

4.1. Data description

The sunspot number dataset is obtained from World Data Center SILSO, Royal Obser-
vatory of Belgium, Brussels1. The dataset contains 3277 records of monthly averaged
total sunspot number from January 1749 to January 2022. We also consider NASA’s
past forecast (from April 1999 to January 2022) and most recent forecast (from Febru-
ary 2022 to October 2041)2 for comparison with considered methods.

The observed sunspot number data is split in chronological order into training (2160
records from January 1749 to December 1928), validation (843 records from January
1929 to March 1999), and testing (274 records from April 1999 to January 2022) sets.
The validation set monitors the training for hyperparameter tuning. The testing set
evaluates the performance of each trained model on unseen data. The best model will
be used to predict sunspot numbers from February 2022 to October 2041, covering
the remaining portion of current Solar Cycle 25 and the coming Solar Cycle 26, in
alignment with NASA’s current forecasting time range.

4.2. Implementation details

We compare the three non-deep learning models, SARIMA, Holt-Winters multiplica-
tive Exponential Smoothing, and Prophet, and the four deep learning models, LSTM,

1https://wwwbis.sidc.be/silso/datafiles
2https://www.nasa.gov/msfcsolar/archivedforecast
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GRU, Transformer, and Informer. We also consider their ensemble models from the
mean and median ensemble methods, the error-based method, linear regression, and
our proposed ensemble method via XGBoost.

We adopt the two evaluation metrics, the root mean squared error (RMSE) and the
mean absolute error (MAE), which are widely-used in time series forecasting prob-
lems (Hyndman and Athanasopoulos 2018), to assess the prediction performance of
considered methods:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2,

MAE =
1

n

n∑
i=1

|ŷi − yi|,

where ŷi and yi are the predicted value and the true value, respectively, and n is the
number of predictions.

All the experiments are performed in Python 3.8 (Van Rossum and Drake 2009)
environment. All deep learning methods are implemented with Pytorch 1.9.0 (Paszke
et al. 2019). SARIMA, basic ensemble methods, and the error-based ensemble method
are implemented with Merlion 1.0.0 (Bhatnagar et al. 2021). Exponential Smoothing
and the linear regression ensemble method are performed with Darts 0.15.0 (Herzen
et al. 2021). The XGBoost ensemble method is carried out using xgboost 1.5.1 (Chen
and Guestrin 2016). Models are trained on two NVIDIA RTX8000 GPUs. We use Tune
(Liaw et al. 2018) in Ray API 1.9.0 (Moritz et al. 2018) for tuning hyperparameters. All
deep learning models are trained up to 200 epochs by the AdamW optimizer, and early-
stopping is used to prevent overfitting. Source codes with pre-trained models, tuning
ranges of model-specific hyperparameters, and best configurations for all models used
in this study can be found at our Github repository3.

All ensemble methods are applied independently to ensemble the forecast outputs
of the three non-deep learning models, the four deep learning models, and all the
seven models, respectively. For basic ensemble methods, training is not required and
performance is evaluated directly on the testing set. The ensemble weights from the
error-based method are calculated by the inverse of the mean squared error (MSE) of
each base model on the validation set. The linear-regression ensemble method com-
putes the weights from the training and validation sets. MSE is chosen as the loss
function for training XGBoost-based ensemble models.

4.3. Results

Table 1 presents the performance results of the seven base models on the testing set.
All the four deep learning models outperform the three non-deep learning models. The
two attention-based deep learning models (Transformer and Informer) exhibit better
performance than the two RNN models (LSTM and GRU). In particular, Informer
achieves the lowest RMSE and MAE with values 29.90 and 22.35, respectively. All
the deep learning models except LSTM show more accurate results than NASA with
Informer having 38.20% lower RMSE and 41.87% lower MAE. Figure 4 (a) displays
the true sunspot numbers and their estimates from deep learning models and NASA

3https://github.com/yd1008/ts ensemble sunspot
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for the testing set. It is observed that predictions of deep learning models generally
follow along patterns in the ground truth data, while the LSTM and NASA have large
deviations around years 2003 and 2020. Figure 4 (b) shows the forecasts from non-deep
learning models. The three models fail to predict the true trend of the series, albeit
have an approximately 11-year cycle. With the lowest RMSE and MAE among the
three models, the estimates from SARIMA are rather accurate at the beginning of the
testing time period but notably deviate from the actual values thereafter.

Table 1. Results of base models on the test-

ing set of sunspot numbers.

RMSE MAE

SARIMA 54.11 45.51
Exponential Smoothing 61.41 49.76
Prophet 60.15 56.09
LSTM 46.14 39.44
GRU 37.14 26.77
Transformer 33.99 25.56
Informer 29.90 22.35
NASA 48.38 38.45

Table 2. Results of ensemble models on the testing set of sunspot num-
bers.

Non-deep learning Deep Learning All Models

RMSE MAE RMSE MAE RMSE MAE

Mean 54.80 48.15 29.01 22.57 35.79 30.51
Median 53.45 46.02 29.96 21.75 39.52 33.88
Error-based 54.70 48.00 27.59 21.12 31.67 26.53
Regression 59.98 52.21 36.26 25.72 38.54 31.04
XGBoost 55.45 49.58 25.70 19.82 30.37 22.30

The improved performance of deep learning methods over non-deep learning ones
can be attributed in part to the formers’ ability to effectively capture non-linearities,
as observed in the complex variations in solar cycles, whereas the latters primarily use
linear combinations. Furthermore, the two attention-based methods appear to better
capture the trend using attention mechanisms that allow dependencies over a longer
period of time to be included into forecasts.

Table 2 summarizes the testing results from the ensemble models. All ensembles of
non-deep learning models and those of all base models fail to improve the performance
since the forecasts are highly unstable and vary between non-deep learning models.
All ensembles of deep learning models perform better than those of non-deep learn-
ing models due to the solid base on the well-performing deep learning models, and
ensembles of all base models have performances between those of the former two.

In particular, the best ensemble model, our XGBoost-DL model, i.e., the XGBoost
ensemble of deep learning models, significantly boosts the performance, with the small-
est RMSE of 25.70 and MAE of 19.82 which are 14.05% and 11.32% lower than those of
the best base model Informer. Figure 5 illustrates the forecasts from the three types of
ensemble models. All deep-learning ensemble models show strong forecasting abilities
in capturing the true trend and seasonality of the series.

We further consider the prediction of future sunspot numbers in current Solar Cy-
cle 25 and the coming Solar Cycle 26. We fine-tune our XGBoost-DL model using
the entire sunspot number data with a new training and validation split of ratio 7/3.
Figure 6 shows the forecast from our XGBoost-DL model in comparison with NASA’s.

13



Our forecast indicates that the Solar Cycle 25 will reach a peak sunspot number of
133.47 in May 2025 and Solar Cycle 26 will have a peak number of 164.62 in November
2035. According to our prediction, the two Solar Cycles will be overall stronger than
the past Solar Cycle 24. NASA’s forecast shows similar but earlier peak values of 137.7
for Solar Cycle 25 in October 2024 and 161.2 for Solar Cycle 26 in December 2034.

Although little work has been done on the sunspot number forecast for Solar Cy-
cle 26, there are a number of recent forecasts for Solar Cycle 25 in the literature with
the peak sunspot number ranging from 57.24 to 228.9 and occurring between 2022 and
2026. Our forecast is around the middle of the receptive ranges of magnitude and time.
Labonville, Charbonneau, and Lemerle (2019) used a dynamo-based model and fore-
casted a weak Solar Cycle 25 with a maximum sunspot number of 89+29

−14 in 2025.3+0.89
−1.05.

Covas, Peixinho, and Fernandes (2019) applied a feed-forward neural network and ob-
tained a weaker Solar Cycle 25 with the peak sunspot number of 57.24 ± 16.76 in
about 2022–2023. Han and Yin (2019) predicted a high peak value of 228.9 ± 40.5
around 2023.918 ± 1.64 years using the Vondrak smoothing method. Pala and Atici
(2019) used the LSTM model and predicted a maximum sunspot number of 167.3 in
July 2022. Benson et al. (2020) estimated the peak sunspot number in Solar Cycle 25
to be 106± 19.75 around March 2025 ± 1 year by using a combination of the LSTM
and WaveNet methods. Xiong et al. (2021) predicted with multiple regression a peak
of 140.2 in March 2024. Prasad et al. (2022) used a stacked LSTM and predicted the
cycle peak with value 171.9± 3.4 in around August 2023 ± 2 months.

5. Conclusion

We compare three non-deep learning models and four deep learning models to forecast
sunspot numbers in this study. Deep learning models outperform non-deep learning
models with lower RMSE and MAE. Additionally, five ensemble learning methods
are applied to the forecast results of non-deep learning models, deep learning models,
and all base models, separately. Ensemble models based on deep learning models have
more accurate predictions than those based on non-deep learning models or all base
models. Our proposed XGBoost-DL model that uses XGBoost to ensemble the four
deep learning models achieves the best performance among all base and ensemble
models as well as NASA’s forecast. Our prediction indicates that Solar Cycles 25 and
26 will be overall stronger than the most recent Solar Cycle 24, and will have the peak
sunspot number of 133.47 in May 2025 and 164.62 in November 2035, respectively,
which are similar to but later than the peaks forecast by NASA at 137.7 in October
2024 and 161.2 in December 2034.
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(a) Forecasts from deep learning models and NASA.

(b) Forecasts from non-deep learning models.

Figure 4. Forecasts of sunspot numbers from base models for the testing set.
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(a) Forecasts from ensembles of deep learning models and from NASA.

(b) Forecasts from ensembles of non-deep learning models.

(c) Forecasts from ensembles of all the seven base models.

Figure 5. Forecasts of sunspot numbers from ensemble models for the testing set.
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Figure 6. Sunspot number forecast from February 2022 to October 2041.
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Herzen, Julien, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guil-
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